## Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE
NAME

## CENTRE NUMBER



CAMBRIDGE INTERNATIONAL MATHEMATICS
0607/23
Paper 2 (Extended)

Candidates answer on the Question Paper.
Additional Materials: Geometrical Instruments

## READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
Do not use staples, paper clips, glue or correction fluid.
You may use an HB pencil for any diagrams or graphs.
DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

## CALCULATORS MUST NOT BE USED IN THIS PAPER.

All answers should be given in their simplest form.
You must show all the relevant working to gain full marks and you will be given marks for correct methods even if your answer is incorrect.
The number of marks is given in brackets [ ] at the end of each question or part question.
The total number of marks for this paper is 40 .

## Formula List

For the equation

$$
a x^{2}+b x+c=0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Curved surface area, $A$, of cylinder of radius $r$, height $h$.

Curved surface area, $A$, of cone of radius $r$, sloping edge $l$.

Curved surface area, $A$, of sphere of radius $r$.

Volume, $V$, of pyramid, base area $A$, height $h$.

Volume, $V$, of cylinder of radius $r$, height $h$.

Volume, $V$, of cone of radius $r$, height $h$.

Volume, $V$, of sphere of radius $r$.

$A=2 \pi r h$
$A=\pi r l$
$A=4 \pi r^{2}$
$V=\frac{1}{3} A h$
$V=\pi r^{2} h$
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \text { Area }=\frac{1}{2} b c \sin A
\end{aligned}
$$

Answer all the questions.
1 Here are the first five terms of a sequence.

```
3
```

(a) Write down the next term.
Answer(a)
(b) Find the $n$th term of the sequence.
Answer(b)

2 Solve these equations.
(a) $\frac{x}{5}+7=3$

$$
\text { Answer(a) } x=
$$

(b) $7(x+3)-2(x+4)=10$

3 Estimate the value of this calculation.

$$
\frac{8.89 \times 61.3}{8.3+11.86}
$$

Show clearly the values you use.
Answer

4 (a) Simplify $25^{-\frac{3}{2}}$, giving your answer as a fraction.
(b) Simplify.
(i) $\left(x^{3}\right)^{4}$

> Answer(b)(i)
(ii) $\sqrt{\frac{x^{10}}{x^{4}}}$

5 In the Venn diagram, show the sets $A, B$ and $C$ so that

$$
A \cup B=A, B \cap C=\varnothing \text { and } A \cap C \neq \varnothing .
$$



6

$A B=5 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and angle $A B C=90^{\circ}$.
$B C D$ is a straight line.
Find
(a) $\tan x^{\circ}$,
(b) $\cos y^{\circ}$.

> Answer(b)

7 Factorise completely.
(a) $3 x^{2}-75 y^{2}$

## Answer (a)

(b) $15 a p+10 b p-9 a-6 b$
$8 \quad \mathbf{i}=\binom{1}{0} \quad \mathbf{j}=\binom{0}{1} \quad \mathbf{a}=\binom{4}{-6}$
(a) $\mathbf{a}=p \mathbf{i}+q \mathbf{j}$

Find the values of $p$ and $q$.

$$
\begin{aligned}
\text { Answer(a) } p & = \\
q & =
\end{aligned}
$$

(b) Calculate $|\mathbf{a}|$, giving your answer in the form $m \sqrt{n}$ where $m$ and $n$ are prime numbers.

$B, D$ and $P$ are points on the circumference of a circle, centre $O$.
$T B A$ and $T D C$ are tangents to the circle.
$D P$ is a diameter and angle $B T D=40^{\circ}$.
Find the size of angle $A B P$.

Question 10 is printed on the next page.
$10 \mathrm{f}(x)=2 x+3 \quad \mathrm{~g}(x)=5-3 x$
(a) Find $\mathrm{g}(x)$ when $\mathrm{f}(x)=11$.

## Answer (a)

(b) Find and simplify an expression for $\mathrm{f}(\mathrm{g}(x))$.

## Answer(b)

(c) Find $\mathrm{g}^{-1}(x)$.

$$
\operatorname{Answer}(c) \mathrm{g}^{-1}(x)=
$$

